Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
Tags
- non parametic softmax
- Policy Gradient
- resample
- sample rows
- sidleup
- loss functions
- freebooze
- remove outliers
- thresholding
- scowl
- Inorder Traversal
- noise contrast estimation
- pulloff
- REINFORCE
- normalization
- shadowing
- rest-api
- fastapi
- checkitout
- domain adaptation
- Excel
- 자료구조
- Knowledge Distillation
- objective functions for machine learning
- Actor-Critic
- MRI
- model-free control
- clip intensity values
- 3d medical image
- straightup
Archives
- Today
- Total
Let's Run Jinyeah
Variance & Bias 본문
Variance & Bias
- Bias - the difference between the average prediction of model and the correct value(center of Target)
- Variance - variability of model prediction(예측값들의 분산된 정도)

Underfitting model?
- usually have high bias and low wariance
- happens when have very less data or try to build a linear model with a nonliner data
Overfitting model?
- usually have low bias and high variance
- happens when our model captures the noise along with the underlying pattern in data(train model a lot over noisy dataset)

Reference
https://medium.com/@toprak.mhmt/the-bias-variance-tradeoff-d9320282ac04
'Deep Learning > Theory' 카테고리의 다른 글
| Transfer Learning and Domain Adaptation (0) | 2022.08.10 |
|---|---|
| Entropy and Cross-Entropy (0) | 2022.07.31 |
| Normalization (0) | 2022.06.18 |
| Bayes Decision Theory (0) | 2022.05.15 |
| Objective function/Loss function (0) | 2022.05.10 |
Comments