Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
Tags
- straightup
- shadowing
- REINFORCE
- clip intensity values
- model-free control
- MRI
- normalization
- 3d medical image
- scowl
- freebooze
- loss functions
- rest-api
- thresholding
- Knowledge Distillation
- non parametic softmax
- Actor-Critic
- sample rows
- remove outliers
- domain adaptation
- objective functions for machine learning
- pulloff
- 자료구조
- noise contrast estimation
- sidleup
- Policy Gradient
- fastapi
- Excel
- Inorder Traversal
- resample
- checkitout
Archives
- Today
- Total
Let's Run Jinyeah
Variance & Bias 본문
Variance & Bias
- Bias - the difference between the average prediction of model and the correct value(center of Target)
- Variance - variability of model prediction(예측값들의 분산된 정도)
Underfitting model?
- usually have high bias and low wariance
- happens when have very less data or try to build a linear model with a nonliner data
Overfitting model?
- usually have low bias and high variance
- happens when our model captures the noise along with the underlying pattern in data(train model a lot over noisy dataset)
Reference
https://medium.com/@toprak.mhmt/the-bias-variance-tradeoff-d9320282ac04
'Deep Learning > Theory' 카테고리의 다른 글
Transfer Learning and Domain Adaptation (0) | 2022.08.10 |
---|---|
Entropy and Cross-Entropy (0) | 2022.07.31 |
Normalization (0) | 2022.06.18 |
Bayes Decision Theory (0) | 2022.05.15 |
Objective function/Loss function (0) | 2022.05.10 |
Comments