Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
Tags
- MRI
- normalization
- 자료구조
- thresholding
- objective functions for machine learning
- fastapi
- Inorder Traversal
- sample rows
- rest-api
- domain adaptation
- loss functions
- model-free control
- Policy Gradient
- straightup
- REINFORCE
- sidleup
- Knowledge Distillation
- resample
- pulloff
- clip intensity values
- 3d medical image
- noise contrast estimation
- Excel
- Actor-Critic
- freebooze
- remove outliers
- scowl
- non parametic softmax
- checkitout
- shadowing
Archives
- Today
- Total
목록normalization (1)
Let's Run Jinyeah

What is the normalization formula used for? Normalization is useful in statistics for creating a common scale to compare data sets with very different values. Deep Learning view? 학습의 안정화: Gradient vanising/exploding 문제를 해결할 수 있음 학습시간의 단축: learning rate를 크게 할 수 있음 성능 개선: local optimum에서 빨리 빠져나올 수 있음 Min-Max Normalization Method normalization formula to [0,1] xnormalized = (x-xmin) / (xmax-xmin) i..
Deep Learning/Theory
2022. 6. 18. 17:31