Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
Tags
- Policy Gradient
- sample rows
- fastapi
- checkitout
- thresholding
- straightup
- non parametic softmax
- domain adaptation
- Excel
- Knowledge Distillation
- freebooze
- noise contrast estimation
- 3d medical image
- model-free control
- scowl
- objective functions for machine learning
- Inorder Traversal
- remove outliers
- clip intensity values
- sidleup
- rest-api
- pulloff
- Actor-Critic
- shadowing
- normalization
- 자료구조
- resample
- MRI
- REINFORCE
- loss functions
Archives
- Today
- Total
목록normalization (1)
Let's Run Jinyeah
What is the normalization formula used for? Normalization is useful in statistics for creating a common scale to compare data sets with very different values. Deep Learning view? 학습의 안정화: Gradient vanising/exploding 문제를 해결할 수 있음 학습시간의 단축: learning rate를 크게 할 수 있음 성능 개선: local optimum에서 빨리 빠져나올 수 있음 Min-Max Normalization Method normalization formula to [0,1] xnormalized = (x-xmin) / (xmax-xmin) i..
Deep Learning/Theory
2022. 6. 18. 17:31