Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- objective functions for machine learning
- remove outliers
- scowl
- non parametic softmax
- thresholding
- Excel
- normalization
- sidleup
- rest-api
- freebooze
- Knowledge Distillation
- 3d medical image
- Policy Gradient
- checkitout
- clip intensity values
- loss functions
- resample
- pulloff
- noise contrast estimation
- fastapi
- sample rows
- model-free control
- MRI
- Actor-Critic
- 자료구조
- Inorder Traversal
- domain adaptation
- shadowing
- REINFORCE
- straightup
Archives
- Today
- Total
목록loss functions (1)
Let's Run Jinyeah

To improve the performance of a Deep Learning model the goal is to the minimize or maximize the objective function. For regression, classification, and regression problems, the objective function is minimzing the difference between predictions and ground truths. Therefore, the objective function is also called loss functions. Regression Loss Functions Squared Error Loss Absolute Error Loss Huber..
Deep Learning/Theory
2022. 5. 10. 13:14