Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- remove outliers
- model-free control
- sample rows
- resample
- checkitout
- 3d medical image
- objective functions for machine learning
- Excel
- loss functions
- non parametic softmax
- Knowledge Distillation
- MRI
- 자료구조
- Policy Gradient
- scowl
- noise contrast estimation
- rest-api
- pulloff
- sidleup
- clip intensity values
- Inorder Traversal
- domain adaptation
- REINFORCE
- freebooze
- thresholding
- straightup
- Actor-Critic
- normalization
- fastapi
- shadowing
Archives
- Today
- Total
목록loss functions (1)
Let's Run Jinyeah

To improve the performance of a Deep Learning model the goal is to the minimize or maximize the objective function. For regression, classification, and regression problems, the objective function is minimzing the difference between predictions and ground truths. Therefore, the objective function is also called loss functions. Regression Loss Functions Squared Error Loss Absolute Error Loss Huber..
Deep Learning/Theory
2022. 5. 10. 13:14