Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
Tags
- fastapi
- remove outliers
- REINFORCE
- sample rows
- 자료구조
- Excel
- non parametic softmax
- loss functions
- pulloff
- shadowing
- thresholding
- resample
- rest-api
- noise contrast estimation
- Actor-Critic
- Knowledge Distillation
- Inorder Traversal
- objective functions for machine learning
- 3d medical image
- normalization
- freebooze
- model-free control
- MRI
- clip intensity values
- checkitout
- straightup
- scowl
- sidleup
- domain adaptation
- Policy Gradient
Archives
- Today
- Total
목록loss functions (1)
Let's Run Jinyeah
To improve the performance of a Deep Learning model the goal is to the minimize or maximize the objective function. For regression, classification, and regression problems, the objective function is minimzing the difference between predictions and ground truths. Therefore, the objective function is also called loss functions. Regression Loss Functions Squared Error Loss Absolute Error Loss Huber..
Deep Learning/Theory
2022. 5. 10. 13:14