Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
Tags
- thresholding
- remove outliers
- loss functions
- scowl
- freebooze
- sample rows
- noise contrast estimation
- fastapi
- MRI
- pulloff
- 3d medical image
- straightup
- rest-api
- clip intensity values
- model-free control
- Actor-Critic
- objective functions for machine learning
- 자료구조
- Inorder Traversal
- Excel
- Policy Gradient
- shadowing
- domain adaptation
- REINFORCE
- non parametic softmax
- sidleup
- checkitout
- resample
- normalization
- Knowledge Distillation
Archives
- Today
- Total
목록loss functions (1)
Let's Run Jinyeah
To improve the performance of a Deep Learning model the goal is to the minimize or maximize the objective function. For regression, classification, and regression problems, the objective function is minimzing the difference between predictions and ground truths. Therefore, the objective function is also called loss functions. Regression Loss Functions Squared Error Loss Absolute Error Loss Huber..
Deep Learning/Theory
2022. 5. 10. 13:14