일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- Excel
- normalization
- Knowledge Distillation
- sample rows
- fastapi
- checkitout
- shadowing
- remove outliers
- freebooze
- non parametic softmax
- 자료구조
- Actor-Critic
- 3d medical image
- MRI
- pulloff
- objective functions for machine learning
- rest-api
- straightup
- domain adaptation
- clip intensity values
- model-free control
- scowl
- REINFORCE
- Policy Gradient
- sidleup
- resample
- noise contrast estimation
- loss functions
- Inorder Traversal
- thresholding
- Today
- Total
목록Programming (39)
Let's Run Jinyeah
python 위치 where python >> C:\Users\samsung\Anaconda3\python.exe [Anaconda3] python 가상환경 위치: C:\Users\samsung\Anaconda3\envs conda envs [Anacodna3] python 버전 확인 python --version >>Python 3.6.8 :: Anaconda, Inc. [Anaconda3] 설치 package 확인 conda list

Outer product uvT output: matrix time complexity: O(n2) Inner product uTv output: scalar time complexity: O(n) a = [a0, a1, a2, ... , aN-1], b = [b0, b1, b2, ...., bN-1] a0*b0 + a1*b1 + aN-1*bN-1 Assuming that multiplication and addition are constant-time operations, the time-complexity is O(n) Multiply O(n) + add O(n) = O(n)

Display all of your drives on a Linux System sudo fdisk -l lsblk 총 2개의 disk (nvme0n1과 nvme1n1)가 마운트 되어 있음 nvme0n1의 마운트 위치: / nvme1n1의 마운트 위치: /data1 Display Size of all of your drives on a Linux System df -h 특정 디렉토리의 File system 용량 확인하기 du -sh # 총 용량 du -h # 모든 하위 디렉토리들의 용량 du -h --max-depth=1 # 첫번째 하위 디렉토리들의 용량
When to Resample? Anytime we use two datasets with different sized voxels Dicom Attributes to use 1. Slice Thickess 2. PixelSpacing (width, height) Calcuate new size out_size = [ int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))), int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))), int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2]))..
Statistic methods np.sort np.min() & np.max() & np.median() np.percentile 더보기 calculate the ith percentile of the input numpy array along a specified axis ith percentile is the value at which i percent of the data is below it axis (default): input array is flattened np.histogram Find index or value np.where Change the shape np.squeeze 더보기 remove 1-dimensional axis np.tile transpose & reshape rav..

What is Thresholding? Thresholding is a type of image segmentation. It converts an image from colour or grayscale into a binary image that is simply black and white. Overall Process of Thresholding (fixed-level thresholding) 1) load the original image 2) convert it to grayscale - grayscale images containe pixel values in the range from 0 to 1 3) de-noise image ex.blurring - not necessary, but im..

What is difference between csv(.csv) and excel(.xls)? 1. CSV simple type of plain text file which uses a specific structure to arrange tabular data a newline terminates each row to begin the next row each column is separated by a comman within a row 2. Excel spreadsheet software included in the Microsoft office suite binary file that holds information about all the worksheets in a workbook Read ..
read dicom image import pydicom as dcm D_TYPE = 'float32' ds = dcm.dcmread('filename.dcm') image = ds.pixel_array.astype(D_TYPE) save gray-scale image to dicom import pydicom as dcm D_TYPE = 'float32' num_bits = 16 ds = dcm.dcmread('filename.dcm') image = ds.pixel_array.astype(D_TYPE) """ image processing for gray image.... output = gray_image (dtype: float32, pixel_range = [0.0, 1.0]) """ gray_..