Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
Tags
- checkitout
- remove outliers
- normalization
- MRI
- rest-api
- REINFORCE
- domain adaptation
- objective functions for machine learning
- straightup
- Actor-Critic
- resample
- 3d medical image
- freebooze
- Policy Gradient
- 자료구조
- sidleup
- pulloff
- model-free control
- sample rows
- shadowing
- non parametic softmax
- noise contrast estimation
- thresholding
- Excel
- loss functions
- Knowledge Distillation
- fastapi
- clip intensity values
- scowl
- Inorder Traversal
Archives
- Today
- Total
목록Brain (1)
Let's Run Jinyeah
What is Thresholding? Thresholding is a type of image segmentation. It converts an image from colour or grayscale into a binary image that is simply black and white. Overall Process of Thresholding (fixed-level thresholding) 1) load the original image 2) convert it to grayscale - grayscale images containe pixel values in the range from 0 to 1 3) de-noise image ex.blurring - not necessary, but im..
Programming/Medical Image Processing
2022. 5. 26. 00:09